Multi-Scale Feature Fusion and Structure-Preserving Network for Face Super-Resolution
نویسندگان
چکیده
Deep convolutional neural networks have demonstrated significant performance improvements in face super-resolution tasks. However, many deep learning-based approaches tend to overlook the inherent structural information and feature correlation across different scales images, making accurate recovery of structure low-resolution cases challenging. To address this, this paper proposes a method that fuses multi-scale features while preserving facial structure. It introduces novel residual block (MSRB) reconstruct key parts structures from spatial channel dimensions, utilizes pyramid attention (PA) exploit non-local self-similarity, improving details reconstructed face. Feature Enhancement Modules (FEM) are employed upscale stage refine enhance current using previous stages. The experimental results on CelebA, Helen LFW datasets provide evidence our achieves superior quantitative metrics compared baseline, Peak Signal-to-Noise Ratio (PSNR) outperforms baseline by 0.282 dB, 0.343 0.336 dB. Furthermore, demonstrates improved visual two additional no-reference datasets, Widerface Webface.
منابع مشابه
Face Verification with Multi-Task and Multi-Scale Feature Fusion
Face verification for unrestricted faces in the wild is a challenging task. This paper proposes a method based on two deep convolutional neural networks (CNN) for face verification. In this work, we explore using identification signals to supervise one CNN and the combination of semi-verification and identification to train the other one. In order to estimate semi-verification loss at a low com...
متن کاملtight frame approximation for multi-frames and super-frames
در این پایان نامه یک مولد برای چند قاب یا ابر قاب تولید شده تحت عمل نمایش یکانی تصویر برای گروه های شمارش پذیر گسسته بررسی خواهد شد. مثال هایی از این قاب ها چند قاب های گابور، ابرقاب های گابور و قاب هایی برای زیرفضاهای انتقال پایاست. نشان می دهیم که مولد چند قاب تنک نرمال شده (ابرقاب) یکتا وجود دارد به طوری که مینیمم فاصله را از ان دارد. همچنین مسایل مشابه برای قاب های دوگان مطرح شده و برخی ...
15 صفحه اولSingle Image Super-Resolution Using Multi-Scale Convolutional Neural Network
Methods based on convolutional neural network (CNN) have demonstrated tremendous improvements on single image super-resolution. However, the previous methods mainly restore images from one single area in the low resolution (LR) input, which limits the flexibility of models to infer various scales of details for high resolution (HR) output. Moreover, most of them train a specific model for each ...
متن کاملSingle Image Super-Resolution via Cascaded Multi-Scale Cross Network
The deep convolutional neural networks have achieved significant improvements in accuracy and speed for single image super-resolution. However, as the depth of network grows, the information flow is weakened and the training becomes harder and harder. On the other hand, most of the models adopt a single-stream structure with which integrating complementary contextual information under different...
متن کاملDeep multi-frame face super-resolution
Face verification and recognition problems have seen rapid progress in recent years, however recognition from small size images remains a challenging task that is inherently intertwined with the task of face super-resolution. Tackling this problem using multiple frames is an attractive idea, yet requires solving the alignment problem that is also challenging for low-resolution faces. Here we pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied sciences
سال: 2023
ISSN: ['2076-3417']
DOI: https://doi.org/10.3390/app13158928